Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phytonematode peptide effectors exploit a host post-translational trafficking mechanism to the ER using a novel translocation signal.

Identifieur interne : 000083 ( Main/Exploration ); précédent : 000082; suivant : 000084

Phytonematode peptide effectors exploit a host post-translational trafficking mechanism to the ER using a novel translocation signal.

Auteurs : Jianying Wang [États-Unis] ; Andi Dhroso [États-Unis] ; Xunliang Liu [États-Unis] ; Thomas J. Baum [États-Unis] ; Richard S. Hussey [États-Unis] ; Eric L. Davis [États-Unis] ; Xiaohong Wang [États-Unis] ; Dmitry Korkin [États-Unis] ; Melissa G. Mitchum [États-Unis]

Source :

RBID : pubmed:32569394

Abstract

Cyst nematodes induce a multicellular feeding site within roots called a syncytium. It remains unknown how root cells are primed for incorporation into the developing syncytium. Furthermore, it is unclear how CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide effectors secreted into the cytoplasm of the initial feeding cell could have an effect on plant cells so distant from where the nematode is feeding as the syncytium expands. Here we describe a novel translocation signal within nematode CLE effectors that is recognized by plant cell secretory machinery to redirect these peptides from the cytoplasm to the apoplast of plant cells. We show that the translocation signal is functionally conserved across CLE effectors identified in nematode species spanning three genera and multiple plant species, operative across plant cell types, and can traffic other unrelated small peptides from the cytoplasm to the apoplast of host cells via a previously unknown post-translational mechanism of endoplasmic reticulum (ER) translocation. Our results uncover a mechanism of effector trafficking that is unprecedented in any plant pathogen to date, andthey illustrate how phytonematodes can deliver effector proteins into host cells and then hijack plant cellular processes for their export back out of the cell to function as external signaling molecules to distant cells.

DOI: 10.1111/nph.16765
PubMed: 32569394


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phytonematode peptide effectors exploit a host post-translational trafficking mechanism to the ER using a novel translocation signal.</title>
<author>
<name sortKey="Wang, Jianying" sort="Wang, Jianying" uniqKey="Wang J" first="Jianying" last="Wang">Jianying Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211</wicri:regionArea>
<wicri:noRegion>65211</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dhroso, Andi" sort="Dhroso, Andi" uniqKey="Dhroso A" first="Andi" last="Dhroso">Andi Dhroso</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, 01609</wicri:regionArea>
<wicri:noRegion>01609</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Xunliang" sort="Liu, Xunliang" uniqKey="Liu X" first="Xunliang" last="Liu">Xunliang Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baum, Thomas J" sort="Baum, Thomas J" uniqKey="Baum T" first="Thomas J" last="Baum">Thomas J. Baum</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011</wicri:regionArea>
<orgName type="university">Université d'État de l'Iowa</orgName>
<placeName>
<settlement type="city">Ames (Iowa)</settlement>
<region type="state">Iowa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hussey, Richard S" sort="Hussey, Richard S" uniqKey="Hussey R" first="Richard S" last="Hussey">Richard S. Hussey</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Davis, Eric L" sort="Davis, Eric L" uniqKey="Davis E" first="Eric L" last="Davis">Eric L. Davis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiaohong" sort="Wang, Xiaohong" uniqKey="Wang X" first="Xiaohong" last="Wang">Xiaohong Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural Research Service and School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural Research Service and School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853</wicri:regionArea>
<orgName type="university">Université Cornell</orgName>
<placeName>
<settlement type="city">Ithaca (New York)</settlement>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Korkin, Dmitry" sort="Korkin, Dmitry" uniqKey="Korkin D" first="Dmitry" last="Korkin">Dmitry Korkin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, 01609</wicri:regionArea>
<wicri:noRegion>01609</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mitchum, Melissa G" sort="Mitchum, Melissa G" uniqKey="Mitchum M" first="Melissa G" last="Mitchum">Melissa G. Mitchum</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211</wicri:regionArea>
<wicri:noRegion>65211</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32569394</idno>
<idno type="pmid">32569394</idno>
<idno type="doi">10.1111/nph.16765</idno>
<idno type="wicri:Area/Main/Corpus">000219</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000219</idno>
<idno type="wicri:Area/Main/Curation">000219</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000219</idno>
<idno type="wicri:Area/Main/Exploration">000219</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phytonematode peptide effectors exploit a host post-translational trafficking mechanism to the ER using a novel translocation signal.</title>
<author>
<name sortKey="Wang, Jianying" sort="Wang, Jianying" uniqKey="Wang J" first="Jianying" last="Wang">Jianying Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211</wicri:regionArea>
<wicri:noRegion>65211</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dhroso, Andi" sort="Dhroso, Andi" uniqKey="Dhroso A" first="Andi" last="Dhroso">Andi Dhroso</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, 01609</wicri:regionArea>
<wicri:noRegion>01609</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Xunliang" sort="Liu, Xunliang" uniqKey="Liu X" first="Xunliang" last="Liu">Xunliang Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baum, Thomas J" sort="Baum, Thomas J" uniqKey="Baum T" first="Thomas J" last="Baum">Thomas J. Baum</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011</wicri:regionArea>
<orgName type="university">Université d'État de l'Iowa</orgName>
<placeName>
<settlement type="city">Ames (Iowa)</settlement>
<region type="state">Iowa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hussey, Richard S" sort="Hussey, Richard S" uniqKey="Hussey R" first="Richard S" last="Hussey">Richard S. Hussey</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Davis, Eric L" sort="Davis, Eric L" uniqKey="Davis E" first="Eric L" last="Davis">Eric L. Davis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xiaohong" sort="Wang, Xiaohong" uniqKey="Wang X" first="Xiaohong" last="Wang">Xiaohong Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural Research Service and School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural Research Service and School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853</wicri:regionArea>
<orgName type="university">Université Cornell</orgName>
<placeName>
<settlement type="city">Ithaca (New York)</settlement>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Korkin, Dmitry" sort="Korkin, Dmitry" uniqKey="Korkin D" first="Dmitry" last="Korkin">Dmitry Korkin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, 01609</wicri:regionArea>
<wicri:noRegion>01609</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mitchum, Melissa G" sort="Mitchum, Melissa G" uniqKey="Mitchum M" first="Melissa G" last="Mitchum">Melissa G. Mitchum</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211</wicri:regionArea>
<wicri:noRegion>65211</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602</wicri:regionArea>
<wicri:noRegion>30602</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cyst nematodes induce a multicellular feeding site within roots called a syncytium. It remains unknown how root cells are primed for incorporation into the developing syncytium. Furthermore, it is unclear how CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide effectors secreted into the cytoplasm of the initial feeding cell could have an effect on plant cells so distant from where the nematode is feeding as the syncytium expands. Here we describe a novel translocation signal within nematode CLE effectors that is recognized by plant cell secretory machinery to redirect these peptides from the cytoplasm to the apoplast of plant cells. We show that the translocation signal is functionally conserved across CLE effectors identified in nematode species spanning three genera and multiple plant species, operative across plant cell types, and can traffic other unrelated small peptides from the cytoplasm to the apoplast of host cells via a previously unknown post-translational mechanism of endoplasmic reticulum (ER) translocation. Our results uncover a mechanism of effector trafficking that is unprecedented in any plant pathogen to date, andthey illustrate how phytonematodes can deliver effector proteins into host cells and then hijack plant cellular processes for their export back out of the cell to function as external signaling molecules to distant cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32569394</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Jun</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Phytonematode peptide effectors exploit a host post-translational trafficking mechanism to the ER using a novel translocation signal.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16765</ELocationID>
<Abstract>
<AbstractText>Cyst nematodes induce a multicellular feeding site within roots called a syncytium. It remains unknown how root cells are primed for incorporation into the developing syncytium. Furthermore, it is unclear how CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide effectors secreted into the cytoplasm of the initial feeding cell could have an effect on plant cells so distant from where the nematode is feeding as the syncytium expands. Here we describe a novel translocation signal within nematode CLE effectors that is recognized by plant cell secretory machinery to redirect these peptides from the cytoplasm to the apoplast of plant cells. We show that the translocation signal is functionally conserved across CLE effectors identified in nematode species spanning three genera and multiple plant species, operative across plant cell types, and can traffic other unrelated small peptides from the cytoplasm to the apoplast of host cells via a previously unknown post-translational mechanism of endoplasmic reticulum (ER) translocation. Our results uncover a mechanism of effector trafficking that is unprecedented in any plant pathogen to date, andthey illustrate how phytonematodes can deliver effector proteins into host cells and then hijack plant cellular processes for their export back out of the cell to function as external signaling molecules to distant cells.</AbstractText>
<CopyrightInformation>© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jianying</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-4991-8328</Identifier>
<AffiliationInfo>
<Affiliation>Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dhroso</LastName>
<ForeName>Andi</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-6117-0607</Identifier>
<AffiliationInfo>
<Affiliation>Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Xunliang</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-0445-0343</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baum</LastName>
<ForeName>Thomas J</ForeName>
<Initials>TJ</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-9241-3141</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hussey</LastName>
<ForeName>Richard S</ForeName>
<Initials>RS</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-2293-6067</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Georgia, Athens, GA, 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Davis</LastName>
<ForeName>Eric L</ForeName>
<Initials>EL</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-8025-3742</Identifier>
<AffiliationInfo>
<Affiliation>Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xiaohong</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-1790-4084</Identifier>
<AffiliationInfo>
<Affiliation>Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural Research Service and School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Korkin</LastName>
<ForeName>Dmitry</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-3875-9085</Identifier>
<AffiliationInfo>
<Affiliation>Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mitchum</LastName>
<ForeName>Melissa G</ForeName>
<Initials>MG</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-9086-6312</Identifier>
<AffiliationInfo>
<Affiliation>Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2009-35302-05304</GrantID>
<Agency>USDA-NIFA-AFRI</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2012-67013-19345</GrantID>
<Agency>USDA-NIFA-AFRI</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2015-67013-23511</GrantID>
<Agency>USDA-NIFA-AFRI</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>IOS-1456047</GrantID>
<Agency>National Science Foundation</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Globodera </Keyword>
<Keyword MajorTopicYN="N">Heterodera </Keyword>
<Keyword MajorTopicYN="N">CLAVATA3/ESR (CLE)</Keyword>
<Keyword MajorTopicYN="N">cyst nematode</Keyword>
<Keyword MajorTopicYN="N">effector</Keyword>
<Keyword MajorTopicYN="N">endoplasmic reticulum (ER) secretory pathway</Keyword>
<Keyword MajorTopicYN="N">peptide signaling</Keyword>
<Keyword MajorTopicYN="N">syncytium</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32569394</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16765</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Alenda C, Gallot-LeGrand A, Fouville D, Grenier E. 2013. Sequence polymorphism of nematode effectors highlights molecular differences among the subspecies of the tobacco cyst nematode complex. Physiological and Molecular Plant Pathology 84: 107-114.</Citation>
</Reference>
<Reference>
<Citation>Altschul SF, Koonin EV. 1998. Iterated profile searches with PSI-BLAST-a tool for discovery in protein databases. Trends in Biochemical Science 23: 444-447.</Citation>
</Reference>
<Reference>
<Citation>Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S. 2004. Feature-based prediction of non-classical and leaderless protein secretion. Protein Engineering Design and Selection 17: 349-356.</Citation>
</Reference>
<Reference>
<Citation>Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. 2000. The Protein Data Bank. Nucleic Acids Research 28: 235-242.</Citation>
</Reference>
<Reference>
<Citation>Bird DM, Jones JT, Opperman CH, Kikuchi T, Danchin EG. 2015. Signatures of adaptation to plant parasitism in nematode genomes. Parasitology 142: S71-S84.</Citation>
</Reference>
<Reference>
<Citation>Block A, Toruño TY, Elowsky CG, Zhang C, Steinbrenner J, Beynon J, Alfano JR. 2014. The Pseudomonas syringae type III effector HopD1 suppresses effector-triggered immunity, localizes to the endoplasmic reticulum, and targets the Arabidopsis transcription factor NTL9. New Phytologist 201: 1358-1370.</Citation>
</Reference>
<Reference>
<Citation>Bozkurt TO, Kamoun S. 2020. The plant-pathogen haustorial interface at a glance. Journal of Cell Science 133: jcs237958.</Citation>
</Reference>
<Reference>
<Citation>Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289: 617-619.</Citation>
</Reference>
<Reference>
<Citation>Cabantous S, Terwilliger TC, Waldo GS. 2005. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nature Biotechnology 23: 102-107.</Citation>
</Reference>
<Reference>
<Citation>Cabantous S, Waldo G. 2006. In vivo and in vitro protein solubility assays using split GFP. Nature Methods 3: 845-854.</Citation>
</Reference>
<Reference>
<Citation>Caillaud MC, Piquerez SJ, Fabro G, Steinbrenner J, Ishaque N, Beynon J, Jones JD. 2012. Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility. The Plant Journal 69: 252-265.</Citation>
</Reference>
<Reference>
<Citation>Chen S, Lang P, Chronis D, Zhang S, De Jong WS, Mitchum MG, Wang X. 2015. In planta processing and glycosylation of a nematode CLE effector and its interaction with a host CLV2-like receptor to promote parasitism. Plant Physiology 167: 262-272.</Citation>
</Reference>
<Reference>
<Citation>Clough SJ, Bent AF. 1998. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16: 735-743.</Citation>
</Reference>
<Reference>
<Citation>Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A. 2006. Comparative protein structure modeling using Modeller. Current Protocols in Bioinformatics 15: 5-6.</Citation>
</Reference>
<Reference>
<Citation>Eves-Van Den Akker S, Lilley CJ, Yusup HB, Jones JT, Urwin PE. 2016. Functional C-TERMINALLY ENCODED PEPTIDE (CEP) plant hormone domains evolved de novo in the plant parasite Rotylenchulus reniformis. Molecular Plant Pathology 17: 1265-1275.</Citation>
</Reference>
<Reference>
<Citation>Fletcher LC, Brand U, Running MP, Simon R, Meyerowitz EM. 1999. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283: 1911-1914.</Citation>
</Reference>
<Reference>
<Citation>Gao B, Allen R, Maier T, Davis EL, Baum TJ, Hussey RS. 2003. The parasitome of the phytonematode Heterodera glycines. Molecular Plant-Microbe Interactions 16: 720-726.</Citation>
</Reference>
<Reference>
<Citation>Gheysen G, Mitchum MG. 2019. Phytoparasitic nematode control of plant hormone pathways. Plant Physiology 179: 1212-1226.</Citation>
</Reference>
<Reference>
<Citation>Golinowski W, Sobczak M, Kurek W, Grymaszewska G. 1997. The structure of syncytia. In: Fenoll C, Grundler FMW, Ohl SA, eds. Cellular and molecular aspects of plant-nematode interactions. Dordrecht, the Netherlands: Springer Netherlands, 80-97.</Citation>
</Reference>
<Reference>
<Citation>Guo X, Chronis D, De La Torre Cuba CM, Smeda J, Wang X, Mitchum MG. 2015. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors. Plant Biotechnology Journal 13: 801-810.</Citation>
</Reference>
<Reference>
<Citation>Guo X, Wang J, Gardner M, Fukuda H, Kondo Y, Etchells JP, Wang X, Mitchum MG. 2017. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation. PLoS Pathogens 13: e1006142.</Citation>
</Reference>
<Reference>
<Citation>Handoo ZA, Subbotin SA. 2018. Taxonomy, identification, and principal species. In: Perry RN, Moens M, Jones JT, eds. Cyst nematodes. Wallingford, UK: CABI International, 365-398.</Citation>
</Reference>
<Reference>
<Citation>Jelenska J, Yao N, Vinatzer BA, Wright CM, Brodsky JL, Greenberg JT. 2007. A J-domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Current Biology 17: 499-508.</Citation>
</Reference>
<Reference>
<Citation>Johnson N, Powis K, High S. 2013. Post-translational translocation into the endoplasmic reticulum. Biochimica et Biophysica Acta 1833: 2403-2409.</Citation>
</Reference>
<Reference>
<Citation>Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, Kikuchi T, Manzanilla-López R, Palomares-Rius JE, Wesemael WM et al. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 14: 946-961.</Citation>
</Reference>
<Reference>
<Citation>Jones J, Mitchum MG. 2018. Biology of effectors. In: Perry RN, Moens M, Jones JT, eds. Cyst nematodes. Wallingford, UK: CABI International, 74-83.</Citation>
</Reference>
<Reference>
<Citation>Juvale PS, Baum TJ. 2018. “Cyst-ained” research into Heterodera parasitism. PLoS Pathogens 14: e1006791.</Citation>
</Reference>
<Reference>
<Citation>Laugé R, Goodwin PH, De Wit PJGM, Joosten MHAJ. 2000. Specific HR-associated recognition of secreted proteins from Cladosporium fulvum occurs in both host and non-host plants. The Plant Journal 23: 735-745.</Citation>
</Reference>
<Reference>
<Citation>Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, Alfano JR. 2014. Distinct Pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts. The Plant Journal 77: 310-321.</Citation>
</Reference>
<Reference>
<Citation>Lu S, Chen S, Wang J, Yu H, Chronis D, Mitchum MG, Wang X. 2009. Structural and functional diversity of CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode Globodera rostochiensis. Molecular Plant-Microbe Interactions 22: 1128-1142.</Citation>
</Reference>
<Reference>
<Citation>Meng L, Ruth KC, Fletcher JC, Feldman L. 2010. The roles of different CLE domains in Arabidopsis CLE polypeptide activity and functional specificity. Molecular Plant 3: 760-772.</Citation>
</Reference>
<Reference>
<Citation>Mitchum MG, Hussey RS, Baum TJ, Wang X, Elling AA, Wubben M, Davis EL. 2013. Nematode effector proteins: an emerging paradigm of parasitism. New Phytologist 199: 879-894.</Citation>
</Reference>
<Reference>
<Citation>Mitchum MG, Wang X, Wang J, Davis EL. 2012. The role of peptides and other small molecules in nematode parasitism. Annual Review of Phytopathology 50: 175-195.</Citation>
</Reference>
<Reference>
<Citation>Miyawaki K, Tabata R, Sawa S. 2013. Evolutionarily conserved CLE peptide signaling in plant development, symbiosis, and parasitism. Current Opinion Plant Biology 16: 598-606.</Citation>
</Reference>
<Reference>
<Citation>Nelson BK, Cai X, Nebenführ A. 2007. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. The Plant Journal 51: 1126-1136.</Citation>
</Reference>
<Reference>
<Citation>Nielsen H. 2017. Predicting secretory proteins with SignalP. In: Kihara D, ed. Protein function prediction (Methods in molecular biology, vol. 1611). New York, NY, USA: Humana Press, 59-73.</Citation>
</Reference>
<Reference>
<Citation>Nimchuk Z, Marois E, Kjemtrup S, Leister RT, Katagiri F, Dangl JL. 2000. Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several Type III effector proteins from Pseudomonas syringae. Cell 101: 353-363.</Citation>
</Reference>
<Reference>
<Citation>Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y. 2009. A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nature Chemical Biology 5: 578-580.</Citation>
</Reference>
<Reference>
<Citation>Park E, Lee H, Woo J, Choi D, Dinesh-Kumar SP. 2017. Spatiotemporal monitoring of Pseudomonas syringae effectors via type III secretion using split fluorescent protein fragments. Plant Cell 29: 1571-1584.</Citation>
</Reference>
<Reference>
<Citation>Patel N, Hamamouch N, Li C, Hussey R, Mitchum M, Baum T, Wang X, Davis EL. 2008. Similarity and functional analyses of expressed parasitism genes in Heterodera schachtii and Heterodera glycines. Jouranl of Nematology 40: 299-310.</Citation>
</Reference>
<Reference>
<Citation>Presti LL, Kahmann R. 2017. How filamentous plant pathogen effectors are translocated to host cells. Current Opinion in Plant Biology 38: 19-24.</Citation>
</Reference>
<Reference>
<Citation>Replogle A, Wang J, Bleckmann A, Hussey RS, Baum TJ, Sawa S, Davis EL, Wang X, Simon R, Mitchum MG. 2011. Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE. The Plant Journal 65: 430-440.</Citation>
</Reference>
<Reference>
<Citation>Replogle A, Wang J, Paolillo V, Smeda J, Kinoshita A, Durbak A, Tax FE, Wang X, Sawa S, Mitchum MG. 2013. Synergistic interaction of CLAVATA1, CLAVATA2, and RECEPTOR-LIKE PROTEIN KINASE 2 in cyst nematode parasitism of Arabidopsis. Molecular Plant-Microbe Interactions 26: 87-96.</Citation>
</Reference>
<Reference>
<Citation>Roy A, Kucukural A, Zhang Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols 5: 725.</Citation>
</Reference>
<Reference>
<Citation>Scott A, Wyatt S, Tsou PL, Robertson D, Allen NS. 1999. Model system for plant cell biology: GFP imaging in living onion epidermal cells. BioTechniques 26: 1125-1132.</Citation>
</Reference>
<Reference>
<Citation>Shinohara H, Matsubayashi Y. 2010. Arabinosylated glycopeptide hormones: new insights into CLAVATA3 structure. Current Opinion of Plant Biology 13: 515-519.</Citation>
</Reference>
<Reference>
<Citation>Shinohara H, Moriyama Y, Ohyama K, Matsubayashi Y. 2012. Biochemical mapping of a ligand-binding domain within Arabidopsis BAM1 reveals diversified ligand recognition mechanisms of plant LRR-RKs. The Plant Journal 70: 845-854.</Citation>
</Reference>
<Reference>
<Citation>Sobczak M, Golinowski W. 2009. Structure of cyst nematode feeding sites. In Berg RH, Taylor CG, eds. Cell biology of plant nematode parasitism. Berlin/Heidelberg, Germany: Springer, 153-187.</Citation>
</Reference>
<Reference>
<Citation>Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ. 1999. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proceedings of the National Academy of Sciences, USA 96: 14153-14158.</Citation>
</Reference>
<Reference>
<Citation>Van den Ackerveken G, Marois E, Bonas U. 1996. Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87: 1307-1316.</Citation>
</Reference>
<Reference>
<Citation>Van den Ackerveken GFJM, Vossen P, De Wit JGMP. 1993. The AVR9 race-specific elicitor of Cladosporium fulvum is processed by endogenous plant proteases. Plant Physiology 103: 91-96.</Citation>
</Reference>
<Reference>
<Citation>Wang J, Joshi S, Korkin D, Mitchum MG. 2010b. Variable domain I of nematode CLEs directs post-translational targeting of CLE peptides to the extracellular space. Plant Signaling and Behavior 5: 1633-1635.</Citation>
</Reference>
<Reference>
<Citation>Wang J, Lee C, Replogle A, Joshi S, Korkin D, Hussey R, Baum TJ, Davis EL, Wang X, Mitchum MG. 2010a. Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins. New Phytologist 187: 1003-1017.</Citation>
</Reference>
<Reference>
<Citation>Wang J, Replogle A, Hussey R, Baum T, Wang X, Davis EL, Mitchum MG. 2011. Identification of potential host plant mimics of CLAVATA3/ESR (CLE)-like peptides from the plant-parasitic nematode Heterodera schachtii. Molecular Plant Pathology 12: 177-186.</Citation>
</Reference>
<Reference>
<Citation>Wang X, Mitchum MG, Gao B, Li C, Diab H, Baum TJ, Hussey RS, Davis EL. 2005. A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana. Molecular Plant Pathology 6: 187-191.</Citation>
</Reference>
<Reference>
<Citation>Wubben M, Gavilano L, Baum TJ, Parrott WA, Davis EL. 2015. Sequence and spatiotemporal expression analysis of CLE-motif containing genes from the reniform nematode (Rotylenchulus reniformis Linford & Oliveira). Journal of Nematology 47: 159-165.</Citation>
</Reference>
<Reference>
<Citation>Xie W, Nielsen ME, Pedersen C, Thordal-Christensen H. 2017. A Split-GFP gateway cloning system for topology analyses of membrane proteins in plants. PLoS ONE 12: e0170118.</Citation>
</Reference>
<Reference>
<Citation>Yamaguchi YL, Ishida T, Sawa S. 2016. CLE peptides and their signaling pathways in plant development. Journal of Experimental Botany 67: 4813-4826.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Iowa</li>
<li>État de New York</li>
</region>
<settlement>
<li>Ames (Iowa)</li>
<li>Ithaca (New York)</li>
</settlement>
<orgName>
<li>Université Cornell</li>
<li>Université d'État de l'Iowa</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Wang, Jianying" sort="Wang, Jianying" uniqKey="Wang J" first="Jianying" last="Wang">Jianying Wang</name>
</noRegion>
<name sortKey="Baum, Thomas J" sort="Baum, Thomas J" uniqKey="Baum T" first="Thomas J" last="Baum">Thomas J. Baum</name>
<name sortKey="Davis, Eric L" sort="Davis, Eric L" uniqKey="Davis E" first="Eric L" last="Davis">Eric L. Davis</name>
<name sortKey="Dhroso, Andi" sort="Dhroso, Andi" uniqKey="Dhroso A" first="Andi" last="Dhroso">Andi Dhroso</name>
<name sortKey="Hussey, Richard S" sort="Hussey, Richard S" uniqKey="Hussey R" first="Richard S" last="Hussey">Richard S. Hussey</name>
<name sortKey="Korkin, Dmitry" sort="Korkin, Dmitry" uniqKey="Korkin D" first="Dmitry" last="Korkin">Dmitry Korkin</name>
<name sortKey="Liu, Xunliang" sort="Liu, Xunliang" uniqKey="Liu X" first="Xunliang" last="Liu">Xunliang Liu</name>
<name sortKey="Mitchum, Melissa G" sort="Mitchum, Melissa G" uniqKey="Mitchum M" first="Melissa G" last="Mitchum">Melissa G. Mitchum</name>
<name sortKey="Mitchum, Melissa G" sort="Mitchum, Melissa G" uniqKey="Mitchum M" first="Melissa G" last="Mitchum">Melissa G. Mitchum</name>
<name sortKey="Wang, Xiaohong" sort="Wang, Xiaohong" uniqKey="Wang X" first="Xiaohong" last="Wang">Xiaohong Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000083 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000083 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32569394
   |texte=   Phytonematode peptide effectors exploit a host post-translational trafficking mechanism to the ER using a novel translocation signal.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32569394" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020